
ICS 104 - Introduction to Programming in Python and CICS 104 - Introduction to Programming in Python and C

LoopsLoops

Reading AssignmentReading Assignment
Chapter 4 Sections 1, 2, 3, 5, 6, 7, 8 and 9.

Chapter Learning OutcomesChapter Learning Outcomes
At the end of this chapter, you will be able toAt the end of this chapter, you will be able to

implement while and for loops
become familiar with common loop algorithms
understand nested loops
process strings

LoopsLoops
In a **loop**, a part of a program is repeated over and over until a speci�c goal is
reached.
Loops are important for calculations that require repeated steps, and for processing
input consisting of many data items.

The While LoopThe While Loop
For example, You put $10,000 into a bank account that earns 5 percent interest per
year.
How many years does it take for the account balance to be double the original
investment?

Question: How we can implement the "Repeat steps while the balance is less than
$20,000?"

Answer: Using the while loop statement

The While LoopThe While Loop

while condition :

 statements

In []: while balance < TARGET :
 year = year + 1
 interest = balance * RATE / 100
 balance = balance + interest

The While LoopThe While Loop
As long as the condition remains true, the statements inside the **while**
statement are executed.
This statement block is called the **body** of the while statement.

For example, we want to increment the year counter and add interest while the
balance is less than the target balance of $20,000:

The While LoopThe While Loop

Execution of the LoopExecution of the Loop

The While LoopThe While Loop

Event-Controlled LoopsEvent-Controlled Loops
In []: # This program computes the time required to double an investment.

Create constant variables.
RATE = 5.0
INITIAL_BALANCE = 10000.0
TARGET = 2 * INITIAL_BALANCE

Initialize variables used with the loop.
balance = INITIAL_BALANCE
year = 0

Count the years required for the investment to double.
while balance < TARGET :
 year = year + 1
 interest = balance * RATE / 100
 balance = balance + interest

Print the results.
print("The investment doubled after", year, "years.")

The While LoopThe While Loop

Count-Controlled LoopsCount-Controlled Loops
A while loop that is controlled by a counter:

In []: counter = 1 # Initialize the counter

while counter <= 10 : # Check the counter
 print(counter)
 counter = counter + 1 # Update the loop variable

The While Loop - Student ActivityThe While Loop - Student Activity
What does the following loop print?

In []: n =1
while n < 100:
 n = 2* n
 print(n)

The While Loop - Student ActivityThe While Loop - Student Activity
What does the following loop print?

In []: i = 0
total = 0
while total < 10:
 i = i + 1
 total = total + i
 print(i,total)

The while Loop - Student Activity

What does the following loop print?

In []: i = 0
total = 0
while total < 0:
 i = i + 1
 total = total - i
 print(i,total)

The While Loop - Student ActivityThe While Loop - Student Activity
We want to write loops that read and process a sequence of input values.
A **sentinel value** denotes the end of a data set, but it is not part of the data.

We want to write a program that computes the average of a set of salary values.
We will use any negative value as the sentinel.

An employee would surely not work for a negative salary.

In []: # This program prints the average of salary values that are terminated with
a sentinel.

Initialize variables to maintain the running total and count.
total = 0.0
count = 0

Initialize salary to any non-sentinel value.
salary = 0.0

Process data until the sentinel is entered.
while salary >= 0.0 :
 salary = float(input("Enter a salary or -1 to finish: "))
 if salary >= 0.0 :
 total = total + salary
 count = count + 1

Compute and print the average salary.
if count > 0 :
 average = total / count
 print("Average salary is", average)
else :
 print("No data was entered.")

Common Loop AlgorithmsCommon Loop Algorithms
Sum and Average Values:

In []: total = 0.0
inputStr = input("Enter value: ")
while inputStr !="":
 value = float(inputStr)
 total = total + value
 inputStr = input("Enter value: ")
print("Sum: ",total)

Common Loop AlgorithmsCommon Loop Algorithms
Sum and Average Value:

In []: total = 0.0
count = 0
inputStr = input("Enter value: ")
while inputStr !="":
 value = float(inputStr)
 total = total + value
 count = count + 1
 inputStr = input("Enter value: ")
if count > 0:
 average = total/count
else:
 average = 0.0
print("Average: ",average)

Common Loop AlgorithmsCommon Loop Algorithms
Counting Matches - You want to count how many negative values are included in a
sequence of integers.
Keep a **counter**, a variable that is initialized with 0 and incremented whenever
there is a match.

In []: negatives = 0
inputStr = input("Enter value: ")
while inputStr !="":
 value = int(inputStr)
 if value < 0:
 negatives = negatives + 1
 inputStr = input("Enter value: ")
print("There were", negatives,"negative values.")

The The for Loop Loop
Uses of a for loop:

The for loop can be used to iterate over the contents of any container.

A container is an object (Like a string) that contains or stores a collection
of elements.
A string is a container that stores a sequence of characters.

The The for Loop Loop
Suppose we want to print a string, with one character per line.
We cannot simply print the string using the **print** funciton.
Instead, we need to iterate over the characters in the string and print each
character individually.

An important difference between the while loop and the for loop:
In the while loop, the index variable i is assigned 0, 1 and so on.
In the for loop with a string container stateName, the element variable is

assigned stateName[0], stateName[1], and so on.

In []: stateName = "Virginia"
for letter in stateName :
 print(letter)

The loop body is executed for each character in the string stateName, starting with

the �rst character.
At the beginning of each loop iteration, the next character is assigned to the
variable letter.
Then the loop body is executed.

The The for Loop Loop
Can we write this program using **while** loop?

In []: stateName = "Virginia"
for letter in stateName :
 print(letter)

In []: i = 0
stateName = "Virginia"
while i < len(stateName):
 letter = stateName[i]
 print(letter)
 i = i + 1

The for LoopThe for Loop
The **for** loop can be used with the range function to iterate over a range of

integer values.
When we write range(i,j), what are the range values (assuming that ?)i < j

In []: for i in range(1,10):
 print(i)

Student ActivityStudent Activity
Write an equivalent while loop for the previous example:

In []: i = 1
while i < 10:
 print(i)
 i = i + 1

The range FunctionThe range Function
You can use a for loop as a count-controlled loop to iterate over a range of integer
values.
We use the range function for generating a sequence of integers that are less than

the argument that can be used with the for loop.

The for Loop - Student ActivityThe for Loop - Student Activity
Use the **for** loop to print only the odd values between 1 and 10 using the **range
function.

In []: for i in range(1,10,2):
 print(i)

Nested LoopNested Loop
When the body of a loop contains another loop, the loops are nested.
A typical use of nested loops is printing a table with rows and colums.

For example, we will print the powers of x as in the following table.

Nested LoopNested Loop
The pseudocode for printing the table is as follows:

How do you print a table row?

You need to print a value for each component.
This requires a second loop.

This loop must be placed inside the preceding loop. We say that the inner loop is
nested inside the outer loop.

Nested LoopNested Loop

Side Note Regarding the Side Note Regarding the print Function Function
The print function displays an end of line by default.

If we want to change this behavior, we can set the end parameter to another string.

The default value of the end parameter is \n.

Consider the following example

In []: course = "ICS 104"
University = "KFUPM"
print(course, end = "@")
print(University)

Nested LoopNested Loop
In []: # This program prints a table of powers of x.

Initialize constant variables for the max ranges.
NMAX = 4
XMAX = 10

Print table header.
for n in range(1, NMAX + 1) :
 print("%10d" % n, end="")

print()
for n in range(1, NMAX + 1) :
 print("%10s" % "x ", end="")

print("\n", " ", "-" * 35)

Print table body.
for x in range(1, XMAX + 1) :
 # Print the x row in the table.
 for n in range(1, NMAX + 1) :
 print("%10.0f" % x ** n, end="")
 print()

Processing StringsProcessing Strings
A common use of loops is to process or evaluate strings.
For example, you may need to count the number of occurrences of one or more
characters in a string or verify that the contents of a string meet certain criteria.

Processing StringsProcessing Strings

Counting MatchesCounting Matches
For example, suppose you need to count the number of uppercase letters contained
in a string.

In []: string = "This is a Test Message"
uppercase = 0
for char in string:
 if char.isupper():
 uppercase = uppercase + 1
print("The number of uppercase letters are:",uppercase)

Processing StringsProcessing Strings

Finding All MatchesFinding All Matches
For example, suppose you are asked to print the position of each uppercase letter in
a sentence.

In []: sentence = input("Enter a sentence: ")
for i in range(len(sentence)):
 if sentence[i].isupper():
 print(i)

Processing StringsProcessing Strings

Finding the First or Last MatchFinding the First or Last Match
When you count the value that ful�ll a condition, you need to look at all values.
However, if your task is to �nd a match, then you can stop as soon as the condition is
ful�lled.

In []: string = "A1"
found = False
position = 0
while not found and position < len(string):
 if string[position].isdigit():
 found = True
 else:
 position = position + 1
if found:
 print("First digit occurs at position",position)
else:
 print("The string does not contain a digit.")

Processing Strings - Student ActivityProcessing Strings - Student Activity
What if we need to �nd the position of the last digit in the string?

In []: string = "A1B2"
found = False
position = len(string) -1
while not found and position >=0:
 if string[position].isdigit():
 found = True
 else:
 position = position -1
if found:
 print("Last digit occurs at position",position)
else:
 print("The string does not contain a digit.")

Processing Strings - Student ActivityProcessing Strings - Student Activity
It is important to validate user input before it is used in computations.
But data validation is not limited to verifying that user input is a speci�c value or
falls within a valid range.
It is also common to require user input to be entered in a speci�c format.
For example, consider the task of verifying whether a string contains a correctly
formatted telephone number.

In USA, telephone numbers consist of three parts, area code, exchange,
and line number **(###)###-####**.

Hint: We will need a loop that can exit early if an invalid character or an out of place
symbol is encountered while processing the string:

In []: string = "(323)570-1234"
valid = len(string) == 13
position = 0
while valid and position < len(string):
 if position == 0:
 valid = string[position] == "("
 elif position == 4:
 valid = string[position] == ")"
 elif position == 8:
 valid = string[position] == "-"
 else:
 valid = string[position].isdigit()
 position = position + 1
if valid:
 print("The string contains a valid phone number.")
else:
 print("The string does not contain a valid phone number")

Application: Random Numbers and SimulationsApplication: Random Numbers and Simulations
A simulation program uses the computer to simulate an activity in the real world.
Simulations are commonly used for predicting climate change, analyzing traf�c,
picking stocks, and many other applications in science and business.
In many simulations, one or more loops are used to modify the state of a system and
observer the change.

Application: Random Numbers and SimulationsApplication: Random Numbers and Simulations

Generating Random NumbersGenerating Random Numbers
Many events in the real world are dif�cult to predict with absolute precision, yet we
can sometimes know the average behavior quite well.
For example, a store may know from experience that a customer arrives every �ve
minutes.

Of course, that is an average—customers don’t arrive in �ve minute
intervals.
To accurately model customer traf�c, you want to take that random
�uctuation into account.
Now, how can you run such a simulation in the computer?

Application: Random Numbers and SimulationsApplication: Random Numbers and Simulations
The Python library has a random number generator that produces numbers that
appear to be completely random.
Calling random() yields a random �oating-point number that is ≥ 0 and < 1.
Call random() again, and you get a different number.
The random function is de�ned in the random module.

In []: from random import random
for i in range(10):
 value = random()
 print(value)

Application: Random Numbers and SimulationsApplication: Random Numbers and Simulations

Simulating Die TossesSimulating Die Tosses
For example, to simulate the throw of a die, you need random integers between 1
and 6.
Hint: Python provides a separate function for generating a random integer within a
given range:

randint(a,b)

In []: # This program simulates tosses of a pair of dice.
from random import randint

for i in range(10) :
 # Generate two random numbers between 1 and 6, inclusive.
 d1 = randint(1, 6)
 d2 = randint(1, 6)

 # Print the two values.
 print(d1, d2)

SummarySummary
while loops
for loops
while loops are very commonly used (general purpose)
Use of the for loop:

The for loop can be used to iterate over the contents of any container.
A for loop can also be used as a count-controlled loop that iterates over a
range of integer values.

SummarySummary
Each loop requires the following steps:

Initialization (setup variables to start looping)
Condition (test if we should execute loop body)
Update (change something each time through)

A loop executes instructions repeatedly while a condition is True.
An off-by-one-error is a common error when programming loops.

Think through simple test cases to avoid this type of error.

